A complete formalization of Fermat's Last Theorem for regular primes in LeanArticleAuthors: Riccardo Brasca
1,2; Christopher Birkbeck
3; Eric Rodriguez Boidi

; Alex Best

; Ruben van De Velde ; Andrew Yang
4
0000-0002-0491-7241##0000-0002-7546-9028##0000-0002-0507-627X##0000-0002-5741-674X##NULL##NULL
Riccardo Brasca;Christopher Birkbeck;Eric Rodriguez Boidi;Alex Best;Ruben van De Velde;Andrew Yang
We formalize a complete proof of the regular case of Fermat's Last Theorem in the Lean4 theorem prover. Our formalization includes a proof of Kummer's lemma, that is the main obstruction to Fermat's Last Theorem for regular primes. Rather than following the modern proof of Kummer's lemma via class field theory, we prove it by using Hilbert's Theorems 90-94 in a way that is more amenable to formalization.
Volume: Volume 1
Published on: July 15, 2025
Accepted on: July 2, 2025
Submitted on: October 17, 2024
Keywords: [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT], [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO], [INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL], [en] Lean, Mathlib, Kummer's lemma