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Abstract. This paper outlines the formalization of derived categories in the mathematical

library of the proof assistant Lean 4. The derived category D(C) of any abelian category C

is formalized as the localization of the category of unbounded cochain complexes with

respect to the class of quasi-isomorphisms, and it is endowed with a triangulated structure.
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Joël Riou

1 Introduction

1.1 Derived categories are not absolutely necessary in order to do homological algebra.

Indeed, when I initially learnt about this subject, it was all about studying projective resolutions

of modules, or homotopies between morphisms of chain complexes of free abelian groups in

the context of the singular homology of topological spaces. I learnt very nice theorems, but

some details surprised me, as in the universal coefficient theorem for singular homology:

Theorem 1.1.1 ([Spa95, Theorem 5.2.8]). Let X be a topological space. Let A be an abelian

group. For any n ∈ Z, there is a canonical short exact sequence:

0→ Hn(X )⊗Z A→ Hn(X , A)→ TorZ
1(Hn−1(X ), A)→ 0

Moreover, this exact sequence splits (noncanonically).

I could understand the proof that the sequence splits, but the statement still looked

mysterious to me. Which phenomenon was responsible for this? I understood this much

better after learning about derived categories [Ver96]. In the derived category of an abelian

category C, instead of working up to homotopy, we formally invert quasi-isomorphisms (i.e.

morphisms of complexes that induce isomorphisms in homology): for example, if P• is a

projective resolution of an object X in C, then it can be understood as a quasi-isomorphism

P•→ X ,1 so that we get an isomorphism P• ∼= X in the derived category D(C). Because Z is a

principal ring, any submodule of a free Z-module is free, and then any Z-module M admits

a very short free resolution 0 → P1 → P0 → M → 0, which implies the vanishing of Extq

groups for q ≥ 2. Using this, one may obtain that any object in the derived category of abelian

groups, in particular the singular chain complex C⋆X of a topological space X , decomposes

(noncanonically) in the derived category as a direct sum C⋆X ∼= ⊕n∈NHn(X )[n]. This gives a

more satisfactory explanation for the existence of the splitting in 1.1.1. Similarly, degeneracy

of spectral sequences can be explained using splittings of objects in derived categories, as it

was done in algebraic geometry for the degeneracy of the Leray spectral sequence in étale

cohomology with Qℓ coefficients for a projective and smooth morphism such that fibers satisfy

the conclusion of the hard Leftschetz theorem [Del68].

1.2 Derived categories were initially introduced by Grothendieck and Verdier in order to

study the cohomology of schemes, first for coherent sheaves [Har66], as an extension of Serre’s

duality, and secondly for étale sheaves, towards the proof of the Weil conjectures [Del74].
1Here, we identify X to the complex · · · → 0→ 0→ X → 0→ 0→ . . . where X sits in degree 0.
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Actually, in the étale context, the derived categories are not just a tool in order to prove

theorems, but the important statements about the “six operations” in the étale formalism can

be phrased only using derived categories.2

1.3 The main result in this paper is the formalization in Lean/mathlib of the derived

category of any abelian category. An application to the construction of spectral sequences, in

particular the Grothendieck spectral sequence for the composition of right derived functors is

also obtained (see 5.4.5.1).

1.4 Derived categories already appeared in some form in the Liquid Tensor Experiment

(LTE), a team effort led by Johan Commelin to formalize in Lean a highly nontrival result in

condensed mathematics by Dustin Clausen and Peter Scholze [Sch21] [CT22]. However, only

the bounded above derived category was considered and it was defined only for an abelian

category C with enough projectives as the homotopy category of bounded above cochain

complexes of projective objects in C. It follows that the major novelty in my formalization

is that it relies on the definition of the derived category in general as a localized category

(see section 3) obtained by formally inverting quasi-isomorphisms between arbitrary cochain

complexes. Spectral sequences also appeared in a prior work in Lean 2 [DRB17], where the

Serre spectral sequence of a fibration [Ser51] was constructed. A spectacular formalization of

the Brouwer fixed-point theorem in Lean was obtained by Brendan Murphy as a consequence

of his formalization of singular homology [Mur22].

1.5 The Lean proof assistant is developed mainly by Leonardo de Moura [MU21]. The

formalization work described in this paper builds on mathlib, which is the community devel-

oped mathematical library for Lean [The20]. Category theory was initially developed by Kim

Morrison and general results on abelian categories were obtained by Markus Himmel [Him20].

This work is also very much a “post-LTE” development, because the design of homological

complexes in mathlib owes a lot to the LTE project, and the lessons learned from it were very

helpful in order to develop homology in mathlib (see 2.1).

1.6 Homological algebra has been formalized in other proof assistants and studied in an

effective manner [RS13] in specialized software. The Kenzo program [DSS] is a tool that is

able to compute homology groups and homotopy groups. Part of the theorems it relies on

have been formally verified in the proof assistant Isabelle/HOL [ABR08]. The approach in this

paper is decidedly non-constructive and non-effective! However, I wish that the software API

2See [Ill90] for more information about the development of derived categories.
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I have contributed in Lean/mathlib could be used in order to formally certify computations in

homology.

1.7 Automated methods for diagram chasing in homological algebra have been studied in

[Mon22] and [GMP24]. This formalization of derived categories (and spectral sequences)

includes a certain number of diagram chases,3 but the strategy I have used (see 2.2) makes

diagram chasing in general abelian categories almost as easy as it would be in the category

of abelian groups. Then, even though attempts at automation of diagram chasing are very

interesting developments, I have not felt it would have eased significantly this work if such

tools had been available.

1.8 This work has made possible a redefinition of Ext-groups in mathlib using derived

categories (see 5.1). Formal properties such as long exact sequences of Ext-groups have been

obtained, which should allow the development of more cohomology theory in Lean/mathlib.

In particular, it will be possible to develop sheaf cohomology as Ext-groups in categories of

abelian sheaves (or using the right derived functor approach 5.3.3). This work should also

enable more computations in group cohomology (which was introduced in mathlib by Amelia

Livingston [Liv23]).

1.9 This formalization was carried on as the GitHub branch jriou_localization of math-

lib. The about 150 pull requests (PR) to mathlib which were extracted from this branch

are listed at https://github.com/leanprover-community/mathlib4/pull/25848. In or-

der to support the content in this paper, it is accompanied with a Lean file in the project

https://github.com/joelriou/lean-derived-categories which allows an easy cross-

reference between mathematical statements and definitions formalized in Lean.

1.10 Throughout the paper, mathlib notations are used whenever it is possible. For example,

the composition of two morphisms f : X → Y and g : Y → Z shall be denoted f ≫ g (and not

g f ). A functor from a category C to a category D shall be denoted F : C*+D. Composition

of functors is denoted F≫ G (and not GF).

1.11 Acknowledgements

I would like to acknowledge the Lean/mathlib community for creating this amazing

framework for the formalization of mathematics. I would like to thank particularly Patrick

3Actually, for the formalization of derived categories, only a handful of diagram chases are necessary. Spectral
sequences require much more!
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Massot for mentioning the existence of Lean to me, Floris van Doorn and Kyle Miller for their

deep understanding of Lean/mathlib which enabled them to answer my questions while they

were both postdocs in Orsay in 2022/2023. I thank Kevin Buzzard for his enthusiasm about

my formalization projects. I want to acknowledge the extreme dedication of Johan Commelin

towards the mathlib community, and his massive reviewing work of my pull requests to

mathlib. Finally, I would like to thank the referee for their suggestions.

2 Homology and diagram chasing in general abelian categories

2.1 The homology refactor

2.1.1 In an abelian category C, given two composable morphisms X1
f
→ X2

g
→ X3 such that

the composition vanishes w : f≫ g = 0, one may define the homology at X2 as the cokernel

of the canonical map Im f → ker g. This was essentially the definition in MATHLIB until I

completed the homology refactor (a sequence of about 70 pull requests which was finished

by PR #8706). This homology refactor had several goals:

• change the definition of homology and exactness so that it becomes self-dual (i.e. we

may easily relate these notions in the opposite category and the original category);

• develop a convenient software API in order to manipulate homology objects and exact-

ness.

One of the main ideas in order to achieve this was to introduce the category of “short

complexes”. Instead of using Lean terms like homology f g w, the idea was to introduce a

structure ShortComplex C which bundles all this data:

structure ShortComplex [HasZeroMorphisms C] where

{X1 X2 X3 : C}

f : X1 −→ X2

g : X2 −→ X3

zero : f≫ g = 0

With this, it becomes more convenient to introduce a single variable S : ShortComplex C,

and refer to its homology as S.homology. That ShortComplex C is a category makes it easy

to study morphisms S.homology −→ S′.homology induced by morphisms S −→ S′ of short

complexes.
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2.1.2 In order to define the homology of S, I introduced the notion of left homology

data for S. Such a h : S.LeftHomologyData involves the data of a morphism h.K → S.X2

which identifies to the kernel of S.g : S.X2 → S.X3 and a morphism h.K → h.H which

identifies to the cokernel of the induced morphism S.X1 → h.K. In dual terms, we define

h′ : S.RightHomologyData to be the data of a morphism S.X2→ h′.Q which identifies to the

cokernel of S. f : S.X1→ S.X2 and a morphism h′.H → h′.Q which identifies to the kernel of

the induced morphism h′.Q→ S.X3. Then, a homology data of S consists of left and right

homology data h and h′, together with an isomorphism h.H ∼= h′.H which makes the pentagon

commute:

S.X1

h. f ′ ��

S. f // S.X2
S.g //

h′.p '' ''

S.X3

h.K

h.π �� ��

* 
 h.i

88

h′.Q
h′.g ′

??

h.H ∼ // h′.H
/� h′.ι

??

When such a homology data exists, we say that S “has homology”. Under this assumption,

which is the type class S.HasHomology, the homology S.homology of S is defined as h.H for

an arbitrary choice of such a homology data.4 We define the object S.cycles, the cycles of S,

as h.K . We also introduce the dual notion S.opcycles, the “opcycles” of S, which is defined

as h′.Q. Then, one may understand the homology of S both as a quotient of S.cycles and as

a subobject of S.opcycles. We say that S is exact (property S.Exact) when there is such a

homology data and that the homology is a zero object.

One of the key remarks in order to understand the reason for this change of definition is

that in the diagram above, the object h.K does not need to be defined as kernel S.g. What is

important in this approach is that this object h.K is equipped with a morphism h.i : h.K → S.X2

which is a kernel of the morphism S.g : S.X2→ S.X3, which in MATHLIB terms is formulated

as the fields wi : i≫ S.g = 0 and hi : IsLimit (KernelFork.ofι i wi) of the left homology

data structure h. Similar remarks apply to the objects h′.Q, h.H and h′.H.

Left and right homology data behave well with respect to the application of exact functors.

Actually, I initially introduced the notion of left homology data as part of the LTE in order to

show that “homology commutes with the application of exact functors”. The idea of redefining

homology by using a structure similar to “homology data” was first formulated by Adam

Topaz.

4The homology could have been defined as h′.H instead of h.H. Even though doing such a choice breaks
the symmetry between the left and the right, it has no consequence because h.H and h′.H are canonically
isomorphic.
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As left and right homology data are switched by passing to the opposite category, it is

clear that these notions of homology and exactness of a short complex are self-dual.

In an abelian category, it is possible to show that all short complexes “have homology”,

so that the notion of homology defined here is consistent with the standard mathematical

definition.

2.1.3 A significant advantage of this definition of homology and exactness is that it makes

sense in very general categories. For example, if S is a short complex in any preadditive

category C, we may introduce the notion of splitting of S:

structure Splitting (S : ShortComplex C) where

/−− a retraction of ‵S.f‵ −/
r : S.X2 −→ S.X1

/−− a section of ‵S.g‵ −/
s : S.X3 −→ S.X2

/−− the condition that ‵r‵ is a retraction of ‵S.f‵ −/
f_r : S.f≫ r = 1 S.X1 := by aesop_cat

/−− the condition that ‵s‵ is a section of ‵S.g‵ −/
s_g : s≫ S.g = 1 S.X3 := by aesop_cat

/−− the compatibility between the given section and retraction −/
id : r≫ S.f + S.g≫ s = 1 S.X2 := by aesop_cat

In order to construct a splitting of S, we have to provide the morphisms r and s, but usually

some of the three equations f_r, s_g and id can be proven automatically, which is the reason

why in this code, the default value for the three proofs is by aesop_cat: category theory in

MATHLIB relies heavily on the aesop automation tactic [LHF23].

Even though not all morphisms in C may have kernels or cokernels, it is still possible to

show that if S is split (and C has a zero object), then S is a (short) exact short complex.

2.1.4 In MATHLIB, we have a category HomologicalComplex C c of homological com-

plexes for a category C (with zero morphisms) and c : ComplexShape ι. The type ι is

the type of indices for the complexes (like N or Z) and c determines what are the direc-

tions of differentials. For example, CochainComplex C Z is an abbreviation for the category

HomologicalComplex C (ComplexShape.up Z) which means that for a cochain complex K,

the relevant differentials are K.d i j : K.X i −→ K.X j when i+1 = j, which can be represented

informally as follows when ι = Z:

. . .
d
−→ Kn−2 d

−→ Kn−1 d
−→ Kn d

−→ Kn+1 d
−→ Kn+2 d

−→ . . .
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As part of the implementation design of homological complexes in MATHLIB, the differential

K.d i j is defined even if i + 1 ̸= j, in which case it has to be zero.

In the general situation, if K is a homological complex, and if i, j and k are indices

in ι, then we may consider the short complex K.sc′ i j k corresponding to the diagram

K.X i −→ K.X j −→ K.X k. If i and k are respectively the previous and the next element of j

for the complex shape c, then the homology of this short complex is by definition the homology

of K in degree j: all the software API for the homology of homological complexes is based on

the corresponding API for short complexes.

2.1.5 Besides changing the definitions, most of the work in this homology refactor corre-

sponds to the development of a basic software API in order to manipulate homology objects,

cycles and “opcycles”: this does not involve any significant lemma or theorem!

2.2 Diagram chasing

2.2.1 In the category of abelian groups, a morphism f : X → Y is a monomorphism (resp.

an epimorphism) if and only if f is an injective (resp. surjective) map, and a short complex

X1
f
→ X2

g
→ X3 is exact if and only if for any x2 ∈ X2 such that g(x2) = 0, there exists x1 ∈ X1

such that x2 = f (x1). These criteria allow a type of reasoning known as “diagram chasing”:

categorical properties can be rephased in terms of properties of elements in the abelian groups

which appear in a certain diagram. In the category of abelian groups, the five lemma or the

snake lemma can be obtained in this way.

There is another well-known situation where diagram chasing is possible. Let S be a

topological space. Let f : X → Y be a morphism of sheaves of abelian groups on S. Then, f

is a monomorphism if and only if for any open subset U of S, the map fU : X (U)→ Y (U) is

injective. However, epimorphisms of sheaves cannot be characterized in such an easy way:

instead of saying that an element in Y (U) can be lifted to an element of X (U), we should

only require that it can be lifted locally. More precisely, it is possible to show that f is an

epimorphism in the category of sheaves of abelian groups if and only if f is locally surjective,

i.e. for any open subset U of S and y ∈ Y (U), there exists an open cover (Ui)i∈I of U and

sections x i ∈ X (Ui) such that for all i ∈ I , f (x i) is the restriction of y to Ui. Using these

criteria, it is possible to do diagram chasing in categories of sheaves.

2.2.2 In order to formalize homological algebra, it is important to be able to obtain lemmas

like the five lemma in general abelian categories. An abstract approach could be given by the

Freyd–Mitchell embedding theorem of (small) abelian categories in categories of modules
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over a ring [Mit64, Theorem 4.4].5 Markus Himmel was able to obtain basic homological

algebra lemmas in general abelian categories [Him20] by formalizing a certain type of pseudo-

elements attached to any object in an abelian category [Bor94]. As this particular type of

pseudo-elements has some issues6, I have developed a different approach which does not

require the introduction of auxiliary types like pseudo-elements: the argumentation shall

only involve morphisms in the abelian category. As we shall see in 2.2.3, this approach also

has a sheaf-theoretic interpretation.

The key observation is the following lemma which characterizes epimorphisms in any

abelian category C:

lemma epi_iff_surjective_up_to_refinements (f : X −→ Y) :

Epi f↔∀ {|A : C|} (y : A −→ Y),

∃ (A′ : C) (π : A′ −→ A) (_ : Epi π) (x : A′ −→ X), π≫ y = x≫ f := . . .

The content of this lemma is illustrated in the following diagram:

A′ x //

π
����

X

f
����

A
y // Y

Indeed, let f : X → Y be an epimorphism, and y : A→ Y be any morphism. It would be too

optimistic to expect the existence of a morphism A→ X which makes the triangle commute.

However, there exists an epimorphism π : A′→ A and a morphism x : A′→ X such that the

square above commutes: it suffices to take the fiber product A′ of y and f . Conversely, when

this property holds for any morphism y : A→ Y (in particular for the identity of Y ), then f is

an epimorphism.

Then, the idea is to think of a morphism y : A → Y as an “element” of Y . If f is an

epimorphism, it may not be possible to lift it to an element A→ X of X . However, as the

lemma above shows, it becomes possible if we allow the precomposition of y with a well

chosen epimorphism A′→ A. This operation of precomposition shall be named “refinement”.

With this language, a morphism f is an epimorphism if and only if it is “surjective up to

refinements”.

5The Freyd-Mitchell theorem was formalized by Markus Himmel, Jakob von Raumer, Paul Reichert and
myself. It entered MATHLIB in February 2025 (PR #22222), see also [HR25].

6See https://mathoverflow.net/questions/419888/pullback-and-pseudoelements/419951 for the
problematic behavior of these pseudo-elements with respect to pullbacks, which was raised by Riccardo Brasca
during the LTE.
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As the exactness of a short complex X1
f
→ X2

g
→ X3 in an abelian category can be rephased

by saying that the induced map X1→ ker g is an epimorphism, it is possible to deduce that

similarly, exactness is equivalent to “exactness up to refinements”:

lemma ShortComplex.exact_iff_exact_up_to_refinements (S : ShortComplex C) :

S.Exact↔∀ {|A : C|} (x2 : A −→ S.X2) (_ : x2 ≫ S.g = 0),

∃ (A′ : C) (π : A′ −→ A) (_ : Epi π) (x1 : A′ −→ S.X1),

π≫ x2 = x1 ≫ S.f := . . .

After I had formalized these lemmas, I found that this approach was described in the

unpublished notes [Ber74]. I have used the word “refinement” because this is the terminology

which appeared there.

This type of argumentation “up to refinements” was very efficient in the formalization of

homological algebra: the snake lemma, the long exact homology sequence of a short exact

sequence of homological complexes, etc.

2.2.3 This approach of diagram chasing “up to refinements” admits a sheaf-theoretic

interpretation. Let f : X → Y be a morphism in an abelian category C. We may consider the

induced natural transformation Hom(−, f ) : Hom(−, X )→ Hom(−, Y ), which we should think

of as a morphism in the category of presheaves (of sets or of abelian groups) on the category C.

Essentially by definition, f is a monomorphism if and only if for all A∈ C, Hom(A, f ) is injective,

i.e. Hom(−, f ) is a monomorphism of presheaves. In order to characterize epimorphisms, one

may introduce the following Grothendieck topology [Sga, II 1.1] on the abelian category C:

a sieve of an object X for this “refinements topology” is covering if and only if it contains

an epimorphism.7 One may easily show that the representable presheaves Hom(−, X ) and

Hom(−, Y ) are sheaves for this Grothendieck topology. With these definitions, epimorphisms

in C can be characterized as follows:

Lemma 2.2.3.1. Let f : X → Y be a morphism in an abelian category C. Then, f is an

epimorphism if and only if the morphism of sheaves Hom(−, f ) : Hom(−, X )→ Hom(−, Y ) is

locally surjective for the refinements topology (i.e. it is an epimorphism of sheaves8).

7In an abelian category, all epimorphisms are effective, so that this “refinements” topology is a particular
case of the “regular topology” that is defined in MATHLIB.

8In MATHLIB, the statement that epimorphisms of sheaves are exactly the locally surjective morphisms requires
some constraints on the universe parameters of the category C, but these do hold if C is a small category in a
certain universe u.

10



Formalization of derived categories in Lean/Mathlib

Indeed, from 2.2.2, we know that f is an epimorphism if and only if it is “surjective up to

refinements”. Then, essentially by definition, f is “surjective up to refinements” if and only if

the morphism Hom(−, f ) is locally surjective for the refinements topology.

It follows from this lemma that arguing “up to refinements” in a general abelian category

is essentially a particular case of the basic diagram chasing in categories of sheaves which

was mentioned in 2.2.1, at least if we are ready to use Grothendieck topologies instead of

topological spaces.

3 Localization of categories

As it was mentioned in the introduction, the main difference between this formalization

of homological algebra and previous works is that it relies on the definition of the derived

category of an abelian category C as a localized category, i.e. it is obtained by formally inverting

the class of quasi-isomorphisms.

3.1 Let C be a category. Let W be a class of morphisms in C. In MATHLIB, such a class is W :

MorphismProperty C.9 The localized category C[W−1] (named W.Localization in MATHLIB)

should be thought as the category generated by C in which we formally invert the morphisms

that are in W [GZ67, I 1.1]. More precisely, the objects in C[W−1] are the same as in C, but

morphisms from X to Y in C[W−1] are equivalence classes of zigzags modulo the equivalence

relation which enforces that we have a functor Q : C*+C[W−1] and that the formal inverses

that are introduced are actual left and right inverses, where a zigzag is a diagram like this

X // Z1 Z2
oo // Z3 . . .oo Zn

oo // Y

which may involve morphisms in C going in both directions, but with the condition that

morphisms going towards the left are in W. More precisely, when I formalized this (initially

in the MATHLIB 3 PR #14422), I defined a quiver with the same objects as C and such that

the arrows are either a morphism in C or a morphism in W in the other direction. Then, the

localized category was defined as a quotient10 of the path category of this quiver.11

9Classes of morphisms in categories were first introduced in mathlib by Andrew Yang in order to formulate
properties of morphisms of schemes in algebraic geometry.

10Quotients categories were formalized by David Wärn in 2020.
11The path category of a quiver was formalized by Kim Morrison in 2021.
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3.2 The localized category C[W−1] and the functor Q : C*+C[W−1] satisfy the universal

property that for any functor F : C*+E which sends morphisms in W to isomorphisms in E,

there exists a unique functor eF : C[W−1]*+E such that F = Q≫ eF . A similar result was

obtained in Coq by Carlos Simpson [Sim06].

3.3 In commutative algebra, there is a parallel notion of the localization of a commutative

ring R at a (multiplicative) set S ⊂ R. This localization is a R-algebra T which satisfies a

certain universal property, which implies that it is well defined up to a unique isomorphism.

There is also an explicit construction of this localization, that is denoted R[S−1]. In the

applications, we usually want to apply results not only to the constructed algebra R[S−1] but

to any T which satisfies the universal property. In the development of the theory of schemes

in Lean [Buz+22], it was important to introduce a nice predicate which expresses that a

morphism of rings R→ T identifies T to the localization R[S−1].

Similarly, given a functor L : C*+D and a class of morphisms W in C, we would like to

express that D is “the” localized category of C with respect to W. The conditions are:

• any morphism in W is mapped by L to an isomorphism;

• the induced functor C[W−1]*+D from the constructed localized category is an equiva-

lence of categories.

When these conditions hold, we shall say that L is a localization functor for W, and this

is the predicate L.IsLocalization W. The exact definition of this predicate is used only in

the internals of the software API about the localization of categories. This is a practical

choice which allows to circumvent the universe issues mentioned below (see 3.7), and it

also relaxes the condition on the localized category, so that this notion behaves well with

respect to equivalences of categories. Using these definitions, we obtain the following relaxed

universal property:

Lemma 3.3.1. If L : C*+D is a localization functor for a class of morphisms W, then for any

category E, the composition with L induces an equivalence of categories from the category of

functors D*+E to the full subcategory of C*+E consisting of functors which invert W.

This lemma contains most of what is needed for the applications: it allows to lift functors

C*+E to D*+E, and similarly natural transformations and natural isomorphisms can be

lifted. Obviously, if L : C*+D and L′ : C*+D′ are two localization functors for a class of

morphisms W, there is an equivalence of categories F : D*+D′ equipped with an isomorphism

L≫ F ∼= L′.

12



Formalization of derived categories in Lean/Mathlib

3.4 We obtain various stability properties of localization functors:

Lemma 3.4.1. If L : C*+D is a localization functor for a class of morphisms W, then the

functor Lop : Cop*+Dop is a localization functor for the opposite class Wop.

Lemma 3.4.2. If L1 : C1*+D1 and L2 : C2*+D2 are localization functors for classes of

morphisms W1 and W2, then the product functor L1× L2 : C1×C2*+D1×D2 is a localization

functor for the product class W1 ×W2 if both W1 and W2 contain identity morphisms in C1

and C2 respectively.

Lemma 3.4.3. Let L1 : C1*+C2 and L2 : C2*+C3 be localization functors for classes of

morphisms W1 and W2 on C1 and C2 respectively. Let W3 be a class of morphisms on C1 such

that:

(1) W3 is inverted by L1≫ L2;

(2) W1 ⊂W3;

(3) W2 is contained in the essential image of W3 by L1.

Then, the functor L1≫ L2 is a localization functor for W3.12

In order to prove these lemmas, the general strategy is as follows:

• using equivalence of categories, show that we may assume that the given functors are

the functors Q of the constructed localized categories 3.1;

• show that in this particular case, the expected functor is a localization functor because

it satisfies the strict universal property 3.2;

The predicate L.IsLocalization W was made a type class, which informally means that it is

a variable in Lean that we do not need to pass explicitly to lemmas and definitions. It is worth

noting that the lemmas 3.4.1 and 3.4.2 are instances: this basically means that if we know

L.IsLocalization W, and that for some reason, we need to know L.op.IsLocalization W.op,

then the later assumption shall be found automatically by Lean’s type class inference system.

3.5 Calculus of fractions

For the application to triangulated categories, and in particular for the construction of

derived categories as triangulated categories, it is important to develop the notion of calculus

of left or right fractions. If the class of morphisms W in the category is C is multiplicative (i.e.

contains identities and is stable by composition), it admits a calculus of left fractions if the

following conditions hold [GZ67, I 2.2]:
12This lemma 3.4.3 is parallel to the statement in commutative algebra that if S1 ⊂ S2 is an inclusion between

two multiplicative subsets of a commutative ring R, then there is a canonical isomorphism R[S−1
1 ][S

−1
2 ]
∼= R[S−1

2 ].
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(1) For any right fraction X
s
← X ′

f
→ Y (i.e. s ∈W), there exists a left fraction X

f ′
→ Y ′

s′
← Y

(i.e. s′ ∈W) such that the following diagram is commutative:

Y ′

X

f ′
88

Y

s′

OO

X ′
s

OO

f

88

(2) If f and g are two morphisms X → Y and s : X ′ → X is a morphism in W such that

s≫ f = s≫ g, then there exists t : Y → Y ′ in W such that f ≫ t = g ≫ t:

X ′ s // X
f //
g
// Y t // Y ′

If L : C*+D is a functor which inverts W (in particular, if L is a localization functor), then

any left or right fraction as above induces a morphism L(X )→ L(Y ). We obtain the following

lemma:

Lemma 3.5.1. Let L : C*+D be a localization functor for a class of morphisms W that admits

a calculus of left fractions. If X and Y are objects in C, any morphism L(X )→ L(Y ) can be

represented by a left fraction.

Moreover, two left fractions X
f1→ Y1

s1← Y and X
f2→ Y2

s2← Y induce the same morphism

L(X )→ L(Y ) if and only if there exists an object Z ∈ C, and two morphisms t1 : Y1→ Z and

t2 : Y2→ Z such that f1≫ t1 = f2≫ t2, and s1≫ t1 = s2≫ t2 ∈W:

Y1
t1

��
X

f1

88

f2 &&

Y

s1

OO

s2

��

Z

Y2

t2

??

This is essentially the mathematical content of [GZ67, I 2]. Many details about this

construction can be found in the article [Sim06] by Carlos Simpson who also formalized this

construction in Coq.

14
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Similarly as in [Sim06], the proof of the lemma above consists in the verification that the

equivalence classes of left fractions are the morphisms for a category C′, and that the obvious

functor C*+C′ satisfies the strict universal property 3.2.

3.6 Preadditive structure

Let L : C*+D be a localization functor for a class of morphisms W. In order to proceed with

the localization of triangulated categories, we need to know that under certain circumstances

the localized category D is additive (i.e. D is preadditive and has finite products).

It is a general fact that finite products indexed by a set I exists in D if and only if the

diagonal functor D*+DI has a right adjoint. It follows that if we assume that C has products

indexed by I , the functor C*+CI has such a right adjoint F : CI*+C, and if we assume that

the class W is compatible with products (i.e. if we have morphisms fi : X i → Yi in W, then

the product map
∏

i fi is also in W), then this functor F can be lifted to a functor eF : DI*+D

if I is finite (this is related to 3.4.2). As I have formalized a theorem about the localization of

adjunctions, one may obtain that eF is the expected right adjoint, and then D also has finite

products indexed by I .

If we assume that C is additive, we may use the previous construction in order to obtain

that D has finite products. It remains to show that D is preadditive, i.e. that the sets of

morphisms in D are naturally equipped with structures of abelian groups. In my first approach,

I used the property that every object X in C is naturally equipped with an (internal) abelian

group object structure, i.e. we have morphisms 0 : ⊤_ C −→ X (where ⊤_ C is the terminal

object in C), neg : X −→ X and add : X × X −→ X (where X × X is the categorical product of

two copies of X ) which satisfies the usual relations.13 Then, as we know that the localization

functor L : C*+D preserves finite products, this functor from C to the category of commutative

group objects in C localizes as a functor from D to the category of commutative abelian group

objects in D, and from this, one may obtain the expected preadditive structure on D.

In a second approach, I have formalized the preadditive structure on the localized category

using the calculus of left fractions: if C is preadditive and W admits a calculus of left fractions,

then D is preadditive and L is an additive functor [GZ67, I 3.3]. (If we know that C is additive,

one may deduce that D also has finite products by using that additive functors preserve finite

products.)

13For example, commutative group schemes are defined as internal abelian group objects in the category of
schemes (over a base).
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3.7 Universe issues

3.7.1 In the context of set theory, universes were introduced in [Sga, I 0] as sets that are

closed under certain set theoretic operations. The axiom of universes (an addition to ZFC)

states that any set belongs to a universe. This axiom is equivalent to the condition that any

cardinal is smaller than an inaccessible cardinal. In that context, if U is a universe, the sets

that are built from sets which belong to U also belong to U (e.g. if ϕ : I → U is a map, with

I ∈ U, then, ∪i∈I ϕ(i) ∈ U). However, due to the axiom of foundation, the set U of all sets

which belong to U is not an element of U, i.e. U ̸∈ U.

In Lean, universes are part of the syntax. Types like N or R are types in the zeroth universe:

they are terms in the type Type 0 (or just Type). But, Type 0 is also a type: if we ask Lean,

using the syntax #check Type 0, we get that Type 0 is a term in Type 1. Roughly speaking,

we may think that Type 0 plays the role of a universe U0 in set theory, and that Type 1 is the

smallest universe U1 which contains U0. More precisely, Mario Carneiro has proved in [Car19]

that Lean’s type theory is equiconsistent relative to ZFC and the existence of sequences of

inaccessible cardinals of arbitrary finite length.

3.7.2 In MATHLIB’s category theory, when we introduce the variables for a category C, we

may proceed like this:

universe v u

variable (C : Type u) [Category.{v} C]

It is important to note that two universes are involved. First, we say that the type of objects

of C is in the universe u. The second variable [Category.{v} C] expresses that we have a

category structure on C such that for all objects X and Y , the type of morphisms X → Y is in

the universe v. In MATHLIB, a small category corresponds to the situation where C : Type u and

[Category.{u} C] for some universe u. For a large category, we would have C : Type (v + 1)

and [Category.{v} C] for some universe v.

3.7.3 Assume that W is a class of morphisms in a category C such we have C : Type u and

[Category.{v} C] and examine the case of the constructed localized category C[W−1] from

3.1. By construction, the type of objects of C[W−1] is C (or more precisely, it is a type synonym

for C, which is a type which is obviously in bijection with C). Then, C[W−1] is a type in the

same universe u. The situation becomes more complicated for morphisms X → Y in the

localized category. We recall that such morphisms are equivalence classes of zigzags:

X // Z1 Z2
oo // Z3 . . .oo Zn

oo // Y
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In order to “parametrize” these zigzags, we have to specify a certain natural number which

is the length of the zigzag, then we have the types of morphisms Zi → Zi±1 which are in

the universe v. A source of disappointment is that we also need to specify the intermediate

objects Z1, . . . , Zn, which belong to a type in the universe u. It follows that if we denote

W.Localization : Type u the localized category, the types of morphisms are in the universe

max u v, i.e. we have [Category.{max u v} W.Localization]. The same remark applies to

the constructed localized category when there is a calculus of left or right fractions, because

similarly as zigzags of arbitrary length contain the data of the auxiliary objects Zi, the data of

a fraction involves one auxiliary object.

3.7.4 In certain circumstances, it is possible to show that the sets of morphisms in the

localized category are v-small (i.e. they are in bijection with a type in the universe v). This is

the case of the homotopy category of a model category C, which is the localized category with

respect to the class of weak equivalences of the model structure. Indeed, the fundamental

lemma of homotopical algebra states:

Lemma 3.7.4.1. [Qui67, Corollary 1, §I.1] Let C be a model category. Let X be a cofibrant

object of C. Let Y be a fibrant object of C. The set of homotopy classes of morphisms X → Y in

C identifies to the set of morphisms between the images of X and Y in the homotopy category

of C.14

It follows that sets of morphisms in the homotopy category of a model category C are

v-small. Indeed, if X and Y are objects in C, there exists a cofibrant replacement X c → X

of X and a fibrant replacement Y → Yf of Y , i.e. X c is cofibrant, and the map X c → X is a

trivial fibration (in particular it is a weak equivalence), and similarly Yf is fibrant, and the

map Y → Yf is a trivial cofibration. Then, it follows from the lemma that any morphism

in the homotopy category between X and Y can be represented as a zigzag of the form

X ← X c → Yf ← Y . If follows that the type of morphisms between X and Y in the homotopy

category identifies to a quotient of X c → Yf which is in Type v.

3.7.5 The main result of [Hov01] is that if C is a Grothendieck abelian category, i.e. an

abelian category that has a generator and exact filtered colimits, then there is a model category

structure on the category of cochain complexes in C indexed by Z (i.e. unbounded complexes)

such that the class of weak equivalences is the class of quasi-isomorphisms. Using 3.7.4, it

follows that types of morphisms in the derived category of C must be v-small. This should

14I have formalized this lemma as part of a test of my localization of categories software API in Lean 3.
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apply in particular to the categories of modules over a ring, and categories of sheaves on a

ringed site.

3.7.6 I have introduced the following type class HasLocalization.{w} W in order to take

into account this universe issue:

universe w v u

variable {C : Type u} [Category.{v} C]

class HasLocalization (W : MorphismProperty C) where

/−− the objects of the localized category. −/
{D : Type u}

/−− the category structure. −/
[hD : Category.{w} D]

/−− the localization functor. −/
L : C⇒ D

[hL : L.IsLocalization W]

In addition to the universes u and v that are involved in the category C, there is a third

universe w, and this type class HasLocalization.{w} W contains the data of a choice of a

localization functor L : C*+D such that the types of morphisms in D are in Type w.15 When

this data is available, the chosen localization functor is denoted W.Q′ : C⇒ W.Localization′.

The design is that if some constructions (e.g. the derived category) require the choice

of a localized category, then the user may introduce the variable [HasLocalization.{w} W].

If the user wants to formalize a theorem where the statement does not involve localized

categories but the proof does, they may prove some auxiliary definitions and lemmas under

the assumption [HasLocalization.{w} W], but in the proof of the theorem, they may use the

following code:

theorem . . . : . . . := by

have : HasLocalization.{max u v} W := HasLocalization.standard W

−− from now on, we access the localized category as ‵W.Localization′‵

. . .

3.7.7 In the particular case of derived categories, there is an abbreviation:

abbrev HasDerivedCategory := MorphismProperty.HasLocalization.{w}

(HomologicalComplex.quasiIso C (ComplexShape.up Z))

15I did not introduce a second auxiliary universe for the type of objects in D: it is assumed to be in Type u,
similary as C. Indeed, the type of objects in the constructed localized category C[W−1] is in bijection with C.
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Then, after a few years, when we are able to obtain a v-smallness theorem for the type of

morphisms in the derived category of a Grothendieck abelian category C (see 3.7.5), it shall

be possible to construct a term in the type HasDerivedCategory.{v} C.

4 The derived category

4.1 Definitions

In this formalization of the derived category of an abelian category C, we define the

derived category D(C) (DerivedCategory C) as the localization of the category of cochain

complexes C(C) (indexed by Z) with respect to quasi-isomorphisms. By definition, we have a

localization functor Q : C(C)*+D(C).

Lemma 4.1.1. Let K be a cochain complex (indexed by Z) in an additive category. There is a

cochain complex Cylinder(K) such that for any cochain complex L, the data of a morphism

Cylinder(K)→ L is naturally equivalent to the data of two morphisms f and g in K → L and

a homotopy between f ang g. The identity of Cylinder(K) corresponds to two morphisms

ι0 : K → Cylinder(K), ι1 : K → Cylinder(K) and a homotopy between ι0 and ι1. Moreover,

there is a homotopy equivalence π : Cylinder(K)→ K such that ι0≫ π= ι1≫ π= idK .

As homotopy equivalences are quasi-isomorphisms, it follows from this lemma that Q(π)

is an isomorphism and that Q(ι0) = Q(ι1). It follows more generally that if f and g are

homotopic morphisms in C(C), then we have an equality of morphisms Q( f ) = Q(g) in

the derived category D(C). In other words, the functor Q : C(C)*+D(C) induces a functor

Qh : K(C)*+D(C) from the homotopy category. It also follows that K(C), which is a quotient

category of C(C), also identifies to the localization of C(C) with respect to the class of

homotopy equivalences.
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4.1.2

C(C) //

Q ##

K(C)

Qh
��

D(C)

Using the lemma 3.4.3, one may deduce that via the functor Qh, the derived category

D(C) identifies to the localization of K(C) with respect to the class of quasi-isomorphisms in

K(C). Then, our direct construction of the category D(C) as a localized category of C(C) is

also consistent with the more standard definition of the derived category in two steps from

the original sources [Ver77] and [Ver96]: first take the quotient by homotopies, and secondly

localize with respect to quasi-isomorphisms. That Qh is a localization functor shall be very

important in order to obtain more structure on the category D(C), namely the triangulated

structure.

4.2 Shifts

4.2.1 When it was first introduced by Kim Morrison in mathlib3 in 2020, the original

definition of a shift on a category C consisted of the data of an auto-equivalence of the category

C. This means that we have a functor F : C*+C, a choice of a quasi-inverse G : C*+C, a

unit isomorphism 1 C ∼= F≫ G, and a counit isomorphism G≫ F ∼= 1 C which satisfy the

triangle identity (similarly as adjoint functors do). This definition was essentially consistent

with the mathematical literature on triangulated categories where it is assumed that F is an

isomorphism of categories (i.e. we have equalities F≫ G = 1 C and G≫ F = 1 C): it is so

in [Nee01] as well as in the original definition of triangulated categories [Ver96, II 1.1.1]

where Verdier assumed that there is a structure of a “Z-catégorie stricte”. In this context, we

may define the iteration F n of the functor F for any n ∈ Z.

4.2.2 In 2021, the definition of shifts was changed by Johan Commelin and Andrew Yang

in mathlib3 PR #10573. The definition became closer to what Verdier defined as a “Z-

catégorie” in [Ver96, I 1.2.2]. It was defined as a monoidal functor Discrete Z⇒ (C⇒ C)

where the category of endofunctors C⇒ C is equipped with the monoidal structure given

by the composition of functors. This means that as part of the data of the shift on the

category, we have functors F n : C⇒ C for all n : Z, an isomorphism zero : F 0 ∼= 1 C, and a

family of isomorphisms add n m : F (n + m) ∼= F n≫ F m for all n m : Z, which satisfy three

compatibilities (associativity, left unitality and right unitality), which expresses a certain

coherence relative to the identities (n+m) + p = n+ (m+ p), 0+ n= n and n+ 0= n in Z.
In mathlib, shifts on categories are defined in this way for any additive monoid A.
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4.2.3 When I ported this from Lean 3 to Lean 4, I felt it was difficult to prove some identities

because the definitions about shifts were always unfolded into terms revealing the internals of

the API for monoidal functors. In the mathlib4 PR #3039, I decided to put a certain isolation

between the API for shifts from that of monoidal functors: abbreviations were replaced by

definitions, and more shift-specific lemmas were introduced. This improved automation

significantly: for example, in mathlib4 PR #3047, almost all the proofs in the file about the

rotation of triangles were now found automatically by aesop_cat.

4.2.4 Assume that the category C is equipped with a shift by an additive monoid A. For any

n : A, the shift functor denoted F n above can be obtained as shiftFunctor C n : C⇒ C, and

we have the notation X⟦n⟧ for (F n).obj X. Similarly, the isomorphisms add can be obtained as

shiftFunctorAdd C n m. The associativity compatibility that was mentioned before expresses

the commutativity of the following pentagon, where the maps are obtained by using the

natural isomorphisms add and the functors F:

X⟦n + m⟧⟦p⟧

∼

!!

X⟦(n + m) + p⟧

∼ 55

X⟦n⟧⟦m⟧⟦p⟧

X⟦n + (m + p)⟧

∼ ))
X⟦n⟧⟦m + p⟧

∼

==

The morphism on the left corresponds to an equality between two objects which follows

from the associativity relation (n+m) + p = n+ (m+ p) in the additive monoid. Out of the

context of a formalization, we may take this equality for granted, and we may not even make

it appear on the diagram: indeed, it does not appear in the equation [Ver96, I (1.2.1.3)]. In

the formalization in Lean, we have to take this into consideration.

4.2.5 So as to mitigate this issue, I have introduced a natural isomorphism X⟦k⟧ ∼= X⟦i⟧⟦j⟧

whenever the equality h : i + j = k holds: this is the definition shiftFunctorAdd′ C i j k h.

In particular, in the pentagon diagram above, the composition X⟦(n + m) + p⟧ ∼= X⟦n⟧⟦m + p⟧

can be obtained directly as shiftFunctorAdd′ C n (m + p) ((n + m) + p) _. It follows that the

associativity can be phrased more generally in terms of these isomorphisms shiftFunctorAdd′

when we have elements a1, a2, a3, a12, a23 and a123 in the additive monoid which satisfy
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a1 + a2 = a12, a2 + a3 = a23 and a1 + a2 + a3 = a123: it says that the two ways to identify

X⟦a123⟧ and X⟦a1⟧⟦a2⟧⟦a3⟧ using X⟦a12⟧⟦a3⟧ or X⟦a1⟧⟦a23⟧ as an intermediate object are

the same.

4.2.6 Let C be a preadditive category. The category of cochain complexes C(C) in C is

equipped with a shift by Z. If K : CochainComplex C Z and n : Z, then K⟦n⟧ is the cochain com-

plex such that by definition we have (K⟦n⟧).X i = K.X (i + n) in degree i and the differentials

are obtained by multiplying by (−1)n the differentials of K.

The very fact that we are able to describe all the shifts K⟦n⟧ and not just K⟦1⟧ and

K⟦−1⟧ shows how relevant the design change 4.2.2 by Johan Commelin and Andrew Yang

was. Indeed, if only the shifts by ±1 were part of the structure of the shift on the category

CochainComplex C Z, then the explicit description of the iterated shifts for all n ∈ Z would

have to be phrased by saying that the nth iteration of the shift functor is isomorphic to the

explicit functor above. As a result, future applications may require that we prove coherence

properties of these isomorphisms! It is a much better design to bundle all of this data and

properties in the definition of the shift.

4.2.7 The shift on the category C(C) induces a shift on the category K(C). The mathematical

reason is that K(C) is the quotient category of C(C) by relations that are compatible with the

shift on C(C): if two morphisms of cochain complexes f and g are homotopic, then so are

their shifts f⟦n⟧′ and g⟦n⟧′ for all n : Z. (In mathlib, shifts of objects are denoted X⟦n⟧ while

shifts of morphisms are denoted f⟦n⟧′.)

In a certain sense, up to isomorphisms, the shift on K(C) is determined by the shift on

the category C(C). A simple way to express a compatibility between the shifts on C(C) and

K(C) consists in the formulation of a compatibility of the quotient functor C(C)*+K(C) with

respect to the shifts, which is done in the next paragraph.

4.2.8 Let F : C*+D be a functor between two categories equipped with a shift by an

additive monoid A. In order to express that F commutes with the shift, we should at least

provide isomorphisms shiftFunctor C a≫ F ∼= F≫ shiftFunctor D a for all a : A, but

these isomorphisms should also satisfy some compatibilities. Indeed, when a = 0, we always

have an obvious isomorphism:

def CommShift.isoZero :

shiftFunctor C (0 : A)≫ F ∼= F≫ shiftFunctor D (0 : A) := . . .
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From the data of such isomorphisms for two elements a and b, we may also construct a

commutation isomorphism for the shift by a+ b:

def CommShift.isoAdd {a b : A}

(e1 : shiftFunctor C a≫ F ∼= F≫ shiftFunctor D a)

(e2 : shiftFunctor C b≫ F ∼= F≫ shiftFunctor D b) :

shiftFunctor C (a + b)≫ F ∼= F≫ shiftFunctor D (a + b) :=

Using these definitions, I have formalized a type class F.CommShift A which expresses that

F commutes with the shifts by A as follows:

class CommShift where

iso (a : A) : shiftFunctor C a≫ F ∼= F≫ shiftFunctor D a

zero : iso 0 = CommShift.isoZero F A := by aesop_cat

add (a b : A) : iso (a + b) = CommShift.isoAdd (iso a) (iso b) := by aesop_cat

Under the assumption F.CommShift A, the API for this type class Functor.CommShift

allows to access the isomorphism iso a of the class above as F.commShiftIso a.

After I had formalized this, I found that the compatibility add was phrased in the commuta-

tive diagram [Ver96, I (1.2.3.2)]. (In Verdier’s notations, the condition zero was automatically

satisfied because in the language of fibered categories used in [Ver96, I 1], the shift functors

on a category are the base-change functors given by a normalized cleavage.)

If τ : F1 −→ F2 is a natural transformation between two functors C*+D which commute

with the shifts on C and D, I have also introduced a type class NatTrans.CommShift τ A

which expresses a compatibility between τ and the isomorphisms F1.commShiftIso a and

F2.commShiftIso a given by the commutation of F1 and F2 with the shifts.

4.2.9 Let C be an abelian category. As we have shown that the functor Qh : K(C)*+D(C) is

a localization functor, the shift on K(C) induces a shift by Z on the derived category D(C):

this construction of a localized shift, and the previously mentioned construction of a quotient

shift 4.2.7, are actually both a special case of a more general construction. Both localization

functors and quotient functors share a common property: these are functors F : C*+D such

that for any category E, the functor (D*+E)*+ (C*+E) given by the precomposition with F

is fully faithful. Under this assumption on F (with E :=D), if C is equipped with a shift by

an additive monoid A, and if the functors shiftFunctor C a≫ F can be lifted as functors

s a : D⇒ D, then the category D can be equipped with a shift by A with the functors s a as

shift functors, and the functor F commutes with the shifts.
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It follows that the three categories C(C), K(C) and D(C) are equipped with shifts by Z. As

Q : C(C)*+D(C) identifies to the composition of the quotient functor C(C)*+K(C) and of the

localization functor K(C)*+D(C), we may deduce that Q also commutes with the shifts.

4.3 The triangulated structure on the homotopy category

4.3.1 If a category T is equipped with a shift by Z, a triangle is a diagram X1 −→ X2 −→ X3

−→ X1⟦1⟧, which may be drawn as:

X3

+1

��
X1

// X2

[[

A pretriangulated structure on a preadditive category T equipped with a shift by Z
involves the data of a predicate on triangles: the triangles which satisfy this predicate are

called distinguished triangles [Ver96, II 1.1.1]. The axioms of pretriangulated and triangulated

categories are statements about these distinguished triangles. Pretriangulated categories

were formalized in mathlib in 2021 by Luke Kershaw. I have added many basic lemmas about

pretriangulated categories, and I have formalized the statement of the “octahedron axiom”

(TR IV) of triangulated categories as this shall be used in 4.4.

Definition 4.3.2 ([Ver96, I 3]). If C is an additive category, we shall say that a triangle in the

homotopy category of cochain complexes indexed by Z in C is a distinguished triangle if it

is isomorphic to the image of a standard triangle attached to a morphism f : K → L in the

category CochainComplex C Z:

Cone( f )
+1

yy
K // L

ee

where Cone( f ) (or mappingCone f) is the cochain complex defined by Cone( f )n := Kn+1⊞ Ln

and the differentials are given by the matrix

�

−d 0

f d

�

. The map L → Cone( f ) is the

obvious injection, while Cone( f )→ K⟦1⟧ is the opposite of the first projection.

The fact that the homotopy category of an additive category is a pretriangulated category

was already obtained by Andrew Yang and Kim Morrison in the LTE. They used the definition

of distinguished triangles from the Stacks project https://stacks.math.columbia.edu/

tag/014P [Jon+]: a triangle in the homotopy category is distinguished if and only if it is
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isomorphic to the triangle X1 −→ X2 −→ X3 −→ X1⟦1⟧ that is associated to a degreewise split

short exact sequence of complexes 0 −→ X1 −→ X2 −→ X3 −→ 0 (the choice of a splitting

in each degree allows the definition of a 1-cocycle from X3 to X1, which corresponds to

a morphism X3 −→ X1⟦1⟧). I have followed more closely the original definition 4.3.2 by

Verdier [Ver96, I 3].16

4.3.3 Calculus of cochains

In order to verify the axioms of triangulated categories for the homotopy category of cochain

complexes, it is convenient to introduce the cochain complex of morphisms Hom•(K , L) for

two cochain complexes K and L [Con00, p. 10]. It is a cochain complex in the category

of abelian groups which in degree n consists of families of morphisms K p → Lq for all

(p, q) ∈ Z2 such that p + n = q. The differentials on Hom•(K , L) are defined in such a way

that an element in Hom0(K , L) is a cocycle if and only if it corresponds to a morphism of

cochain complexes K → L. In mathlib, I have implemented this definition as the cochain

complex HomComplex K L. However, the more convenient related definitions are the types of

cochains HomComplex.Cochain K L n and cocycles HomComplex.Cocycle K L n in this complex.

We obtain the expected correspondence between morphisms of cochain complexes and 0-

cocycles as:

def equivHom : (K −→ L) ≃+ Cocycle K L 0 where

. . .

Similarly, two morphisms of cochain complexes ϕi : K → L for i ∈ {1, 2} are homotopic if

and only if the corresponding cochains are cohomologous:

def equivHomotopy (ϕ1 ϕ2 : K −→ L) :

Homotopy ϕ1 ϕ2 ≃
{ z : Cochain K L (−1) //

Cochain.ofHom ϕ1 = δ (−1) 0 z + Cochain.ofHom ϕ2 } where

. . .

Then, in the verification of the axioms of triangulated categories, as we need to construct

morphisms from or to mapping cones of morphisms (and homotopies), it is very convenient

to manipulate them as cochains. For example, we have the following definitions for the left

and right inclusions in the mapping cone of a morphism f : K → L and the first and second

projections from it:
16However, I have followed the better sign conventions of [Con00, p. 8]. Originally, there was no sign in the

definition of the morphism Cone( f )→ K⟦1⟧ in [Ver96, I 3.2.2.5] and [Har66, I §2].
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def inl : Cochain K (mappingCone f) (−1) := . . .

def inr : L −→ mappingCone f := . . ..

def fst : Cocycle (mappingCone f) K 1 := . . .

def snd : Cochain (mappingCone f) L 0 := . . .

An important structure on cochains is that they can be composed: if z1 : Cochain K L a

and z2 : Cochain L M b, we may construct their composition in Cochain K M (a + b). Actually,

similarly as for shifts 4.2.5, I defined the composition z1.comp z2 h : Cochain K M c for any

c : Z such that h : a + b = c holds. Computations can be achieved using lemmas like:

lemma inl_fst :

(inl f).comp (fst f).1 (neg_add_self 1) = Cochain.ofHom (1 K) := . . .

Here, inl f is of degree −1 and fst f is of degree 1. Then, their naive composition

would be of degree (−1) + 1. By using the design above, which forces the user to provide the

equation neg_add_self 1 : (−1) + 1 = 0, we obtain a 0-cochain.

This design for the composition of cochains is different from the design for the product of

homogeneous elements in graded rings in mathlib [WZ22]. If I had followed a similar design

as for graded rings, I would have introduced the type of the direct sum of the abelian groups

Cochain K L n for all n ∈ Z,17 and made computations in this type. On the one hand, doing

so may have eased the automation of the proof of some identifies (especially those where

the associativity of the composition is used), but in many situations, especially when K or L

is obtained by shifting other cochain complexes, we need to specify explicitly well chosen

integers in order to do computations.

4.3.4 The octahedron axiom

The main ingredient in order to obtain the octahedron axiom for the homotopy category is

that if f : X1 → X2 and g : X2 → X3 are composable morphisms in the category of cochain

complexes, then there is a distinguished triangle:

Cone(g)
+1

ww
Cone( f ) // Cone( f ≫ g)

hh

17This type could be defined as the subtype of the families of morphisms αp,q : K p → Lq for all p and q in Z
consisting of those families (αp,q)p,q such that {q− p,α

p ,q ̸= 0} is finite.
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In order to do that, we need to construct an isomorphism in the homotopy category between

Cone(g) and the mapping cone of the canonical map Cone( f )→ Cone( f ≫ g). We actually

show that the former is a deformation retract of the latter. In order to verify this, we need

to construct a homotopy between two endomorphisms of Cone(Cone( f )→ Cone( f ≫ g)).

If we unfold the definitions, we see that in degree n, we have Cone( f )n ≃ X n+1
1 ⊞ X n

2 and

Cone( f ≫ g)n ≃ X n+1
1 ⊞ X n

3 , and it follows that we have an isomorphism:

Cone(Cone( f )→ Cone( f ≫ g))n ∼= (X n+2
1 ⊞ X n+1

2 )⊞ (X n+1
1 ⊞ X n

3 )

We see that the two endomorphisms we are trying to relate by a homotopy can be thought as

4× 4-matrices consisting of cochains from X i to X j of various degrees d ∈ {−2,−1, 0, 1, 2} for

various tuples (i, j). Then, once the candidate homotopy is found, the equality of cochains

that we need to show can be interpreted as an identity between two 4× 4-matrices, which

corresponds to 16 identities between cochains.

One of the difficulties when proving equalities involving cochains is related to the associa-

tivity of the composition of cochains. In category theory, when f , g and h are composable

morphisms, a term ( f ≫ g)≫ h is automatically replaced by the simp tactic as f ≫ (g ≫ h)

(and then, the parentheses are redundant). Automation in mathlib relies on this design

choice that compositions are “associated towards the right”. We may try to do the same for

cochains, but the lemma expressing the associativity of the composition of cochains is phrased

as follows:

lemma comp_assoc {n1 n2 n3 n12 n23 n123 : Z}
(z1 : Cochain F G n1) (z2 : Cochain G K n2) (z3 : Cochain K L n3)

(h12 : n1 + n2 = n12) (h23 : n2 + n3 = n23) (h123 : n1 + n2 + n3 = n123) :

(z1.comp z2 h12).comp z3 (show n12 + n3 = n123 by rw [← h12, h123]) =

z1.comp (z2.comp z3 h23) (by rw [← h23,← h123, add_assoc]) := by . . .

The issue is that if zi for i ∈ {1,2,3} are composable cochains of degrees ni, we may

consider the composition “z1≫ z2” only if we provide an integer n12 such that n1 + n2 = n12,

and similarly for all the other compositions in the identity “(z1≫ z2)≫ z3 = z1≫ (z2≫ z3)”.

We could be tempted to define the composition as a cochain of degree n1 + n2, but using

n1 + n2 is not always the best choice: for example, if z1 is of degree n− 1 for some integer n,

and z2 is of degree 1, we probably want to consider the composition “z1≫ z2” as a cochain of

degree n rather than (n− 1) + 1. To be more specific about the associativity, if we have all

the data and properties in order to make sense of the LHS of the equality (i.e. we have the
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integers n12 and n123), in general, there is no preferred choice for the integer n23 = n2 + n3

which appears in the RHS. This is the reason why we cannot make a nice general simp lemma

out of comp_assoc. In a few carefully selected situations, there is a preferred choice for n23,

in which case we may state specialized simp lemmas, e.g. when one of the ni is zero. Another

case is when n2 = −n3: we may choose n23 := 0. For example, if α is a cochain of degree n, the

identity “(α≫ inl f )≫ fst f = α” can be proved automatically by simp: as inl f and fst f are

respectively of degrees −1 and 1, the associativity relation is applied, so that the simp tactic

is able to get the successive equalities (α≫ inl f )≫ fst f = α≫ (inl f ≫ fst f ) = α≫ 1= α.

These difficulties with the associativity relation are one of the reasons why, in the proof of

the axioms of triangulated categories (including the octahedron axiom), we do not prove the

expected identities between cochains by doing only computations in the types of cochains. In

a few situations, in order to prove an equality between two cochains α and β in Homn(K , L),

instead of proving directly α = β , we show it componentwise, i.e. using suitable extensionality

lemmas, we have to show that for all p and q such that p+ n= q, the morphisms K p→ Lq

that are part of α and β are equal. Here again, we have to make reasonable choices for the

integers p and q, e.g. if n = 0, we may assume that q is p by definition: two 0-cochains α

and β are equal if and only if the corresponding morphisms K p→ Lp are equal for all p. By

doing so, the associativity issue with the composition of cochains disappears because we can

use the associativity of the composition of morphisms in the category C.

This formalization of the triangulated structure on the homotopy category of cochain

complexes indexed by Z in any additive category entered mathlib in January 2024 (PR

#9550).

4.4 The localization theorem for triangulated categories

I have formalized the following theorem, which is essentially [Ver96, II 2.2.6]:

Theorem 4.4.1. Let T be a pretriangulated category. Let W be a class of morphisms in T

that has a calculus of left fractions (see 3.5) and is compatible with the triangulation. The

localized category T[W−1] has a pretriangulated category structure such that the localization

functor T*+T[W−1] is a triangulated functor. Moreover, if T is triangulated and that W also

has a calculus of right fractions, then T[W−1] is a triangulated category.

The condition that W is compatible with the triangulation means that it is invariant by

the shift functors and that if T : X1→ X2→ X3→ X1[1] and T ′ : X ′1→ X ′2→ X ′3→ X ′1[1] are

distinguished triangles, then any commutative square where the maps s1 and s2 are in W can

be extended to a morphism of triangles T → T ′ such that s3 is also in W:
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X1

s1

��

// X2

s2

��

// X3

s3

��

// X1[1]

s1[1]
��

X ′1
// X ′2

// X ′3
// X ′1[1]

In my formalization, the category T[W−1] can be replaced by the target category of

any localization functor L : T*+D with respect to W. The verification of the axioms of

(pre)triangulated categories for D is relatively easy. The only difficulty consists in the con-

struction of the expected structures on the category D: the preadditive structure is obtained

using the calculus of fractions (see 3.6), and the shift functors are obtained by localization

(see 4.2.9).

4.4.2 In order to construct classes of morphisms W satisfying the assumptions of 4.4.1, the

main construction is that of a class of morphisms WS attached to a triangulated subcategory

S of a triangulated category T. A triangulated subcategory S consists of the data of a

predicate on objects on T which is satisfied by a zero object, is stable by shifts and such that

if X1 → X2 → X3 → X1[1] is a distinguished triangle, and if X1 and X3 are in S, then X2 is

isomorphic to an object in S. Then, we define WS as the class of morphisms X1→ X2 which

fit into a distinguished triangle X1→ X2→ X3→ X1[1] with X3 ∈ S.

The verification of the expected properties for WS uses the octahedron axiom, and this

is the reason why this axiom was introduced [Ver96, II 2.2.12]. The full subcategory of T

corresponding to S is automatically endowed with a triangulated structure, and the localized

category with respect to WS is also denoted using the quotient notation C/S: this is known

as the Verdier quotient of C by S.

4.4.3 The triangulated structure on the derived category D(C) of an abelian category is

obtained by taking the Verdier quotient of the triangulated category K(C) by the triangulated

subcategory A consisting of acyclic objects in the homotopy category K(C).

In order to check that A is a triangulated subcategory and that the class WA is precisely

the class of quasi-isomorphisms, we show that the homology functor H0 : K(C)*+C is a

homological functor, i.e. that if X1→ X2→ X3→ X1[1] is a distinguished triangle in K(C),

then H0(X1) → H0(X2) → H0(X3) is an exact sequence. This can be proven directly by

diagram chasing using the definition 4.3.2 of distinguished triangles, or this can be deduced

from the homology sequence associated to a short exact sequence of cochain complexes. Then,

the triangulated subcategory A can be understood as the “kernel” of the homological functor
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H0: an object X belongs to A if and only if for any n ∈ Z, H0(X [n]) is zero, or equivalently, if

for any n ∈ Z, Hn(X ) is zero.

This construction of the derived category was submitted to mathlib in PR #11806 in

March 2024, and it was merged in June 2024.

5 Ongoing works

In this section, I outline some ongoing works. Very significant parts of these are already

formalized, but it may take a certain time before they enter mathlib.

5.1 Ext-groups

Before this work, Ext-groups (or Ext-modules) were defined in mathlib only in abelian

categories that have enough projectives. This applies to the category of modules over a ring,

which is sufficient for the application to group cohomology [Liv23] and to local cohomology

(whose definition was formalized in 2023 by Emily Witt and Kim Morrison). However, we

cannot use this definition in the context of categories of sheaves over a topological space, or

a Grothendieck topology. Moreover, if 0→ X1→ X2→ X3→ 0 is a short exact sequence in an

abelian category C, and if Y ∈ C, we should have two long exact sequences of Ext:

· · · → Extn(Y, X1)→ Extn(Y, X2)→ Extn(Y, X3)
δ
→ Extn+1(Y, X1)→ . . .

· · · → Extn(X3, Y )→ Extn(X2, Y )→ Extn(X1, Y )
δ
→ Extn+1(X3, Y )→ . . .

Before the present work, mathlib did not contain the statement of these exact sequences.18

However, the second exact sequence was formalized in the LTE using the definition of

Extn(−, Y ) as the right derived functors of Hom(−, Y ).

I have formalized the fact that the functor C*+D(C) which sends an object X ∈ C to the

cochain complex · · · → 0→ 0→ X → 0→ 0→ . . . where X sits in degree 0 is fully faithful

(this is the inclusion of the heart of a t-structure, see 5.2). As a result, we may identify C to

a full subcategory of the derived category D(C). Given two objects X and Y in C, we may

define Extn(X , Y ) as HomD(C)(X , Y [n]) for any n ∈ N. It is then easy to obtain the expected

long exact sequences.

There are two difficulties in this process:

18These long exact sequences are now in mathlib (see PR #14515 and #15092.)
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• make sign conventions for the definition of the connecting homomorphisms δ consistent

with the existing mathematical literature [Con00, §1.3];

• find a partial solution to the universe issue 3.7: in general, the type of morphisms

between two arbitrary objects in the derived category C may lie in a larger universe than

the universe of morphisms in the category C. However, if C has enough projectives or

enough injectives, it is possible to show that the types of morphisms HomD(C)(X , Y [n])

are small for X and Y in C. It follows that Ext-groups can be defined by “shrinking”

these types to the smaller universe.

5.2 t -structures

5.2.1 If C is an abelian category, the homology functors Hq : D(C)*+C can be used in order

to define full subcategories D(C)≥n and D(C)≤n for all n ∈ Z:

• an object X ∈ D(C) is ≥ n if Hq(X ) is zero whenever q < n.

• an object X ∈ D(C) is ≤ n if Hq(X ) is zero whenever n< q.

These full subcategories satisfy the following important properties:

• If X ≤ 0 and Y ≥ 1, then HomD(C)(X , Y ) = 0.

• For any Z ∈ D(C), there exists a distinguished triangle X → Z → Y → X [1] with X ≤ 0

and Y ≥ 1.

More generally, a t-structure [Bei+18, §1.3] on a triangulated category T consists of the

data of full subcategories T≥n and T≤n satisfying similar properties as those stated above. I

would like to emphasize the clarity of the exposition in [Bei+18, §1.3]: it was easy to translate

the written arguments into formal proofs in Lean/mathlib.

5.2.2 Given a t-structure on a triangulated category T, I have formalized the verification

that the heart T≥0 ∩ T≤0 of the t-structure is an abelian category [Bei+18, Théorème 1.3.6].

For example, the heart of the canonical t-structure defined above on the derived category of

D(C) of C is C itself.

5.2.3 An important feature of t-structures is that the distinguished triangle X → Z → Y →
X [1] with X ≤ 0 and Y ≥ 1 is functorial in Z: one may define functors τ≤0, τ≥1 and a natural

transformation δ : τ≥1Z → (τ≤0Z)[1] such that the following triangle is distinguished for all

Z:

τ≤0Z → Z → τ≥1Z
δ
→ (τ≤0Z)[1]
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More generally, one may define functors τ≥n, τ≤n, τ>n := τ≥n+1 and τ<n := τ≤n−1. An

important result is that there are natural isomorphisms τ≥a(τ≤bZ)∼= τ≤b(τ≥aZ) for all a and

b in Z.

5.2.4 If a ≤ b ≤ c, then there is a natural distinguished triangle for all X :

τ<c(τ≥bX )
+1

xx
τ<b(τ≥aX ) // τ<c(τ≥aX )

ff

This may be extended for a, b and c in Z ∪ {±∞} if we set τ<−∞X = τ≥+∞X = 0 and

τ≥−∞X = τ<+∞X = X . Then, to any object X in a triangulated category T equipped with a

t-structure is attached what Verdier calls “un objet spectral de type Z∪{±∞} à valeurs dans T”

[Ver96, II 4.1.2]. Surprisingly, I did not find any mention of this spectral object in [Bei+18].

The formalization in Lean is long and technical, but it shall be a very important tool in the

construction of spectral sequences 5.4.4.

5.3 Derived functors

5.3.1 If F : C*+D is an additive functor between abelian categories, there is an induced

triangulated functor K(C)*+K(D) on the homotopy categories. In general, this functor does

not preserve quasi-isomorphisms, unless F is exact. In other words, the composed functor

K(C)*+D(D) may not send quasi-isomorphisms in K(C) to isomorphisms in D(D), i.e. there

is no “commutative diagram” of functors:

K(C) F //

��

K(D)

��
D(C) // D(D)

However, it is often possible to construct a functor RF : D(C)*+D(D), and instead of an

isomorphism between the composed functors, we have a natural transformation α:

K(C)

�� α

F //

��

K(D)

��
D(C) RF // D(D)
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The tuple (RF,α) is said to be the right derived functor when it is universal (i.e. it is an initial

object in the category of such diagrams). By definition, when it exists, such a right derived

functor is a left Kan extension of K(C)*+D(D) along the localization functor K(C)*+D(C).

5.3.2 Kan extensions have been introduced in mathlib by Yuma Mizuno in PR #6552 in the

context of bicategories. Mathematically speaking, the notion of right derived functor, which

is a special case of a left Kan extension of functors, can be thought as a particular case of left

Kan extension in bicategories. However, in terms of formalization in Lean, we cannot use the

same software API for both because in the diagram above, the categories may not have the

same universe parameters (see also 3.7).

I have formalized similar definitions of left Kan extensions in the context of categories and

functors, and developed the particular case of right derived functors. I was able to formalize

the following theorem:

Theorem 5.3.3. Let F : C*+D be an additive functor between abelian categories. We

assume that C has enough injectives. The induced triangulated functor F : K+(C)*+K+(D)

on the homotopy categories of bounded below cochain complexes can be right derived as a

triangulated functor RF : D+(C)*+D+(D).

The proof of this theorem involves two aspects. First, the main technical results are

that if we denote Injectives(C) the full subcategory of C consisting of injective objects, for

any L ∈ K+(C), there is a quasi-isomorphism L → L′ with L′ ∈ K+(Injectives(C)).19 These

statements generalize the well known fact that if X ∈ C, then X admits an injective resolution

0 → X → I0 → I1 → I2 → . . . . Secondly, I have formalized the notion of “derivability

structure” introduced by Bruno Kahn and Georges Maltsiniotis [KM08]: this is a general

abstract machinery in order to construct derived functors. (The details about this categorical

notion are too technical to be described here.) Using the properties mentioned above, I

have shown that the inclusion functor K+(Injectives(C))*+K+(C), thought as a morphism of

localizers (here, it means that this functor sends isomorphisms to quasi-isomorphisms), is a

right derivability structure; moreover, the induced functor K+(Injectives(C))*+D+(C) is an

equivalence of categories.20 Here, the consequence is that any functor G : K+(C)→ E from

the bounded below homotopy category has a right derived functor RG : D+(C) → E, and

19The lemmas that I have formalized essentially correspond to the factorization axiom CM5 for the model
category structure on C+(C) when C has enough injectives.

20The dual result of this is that if C has enough projectives, then the category D−(C) is equivalent to
K−(Projectives(C)), which shows the compatibility of this approach and the LTE 1.4.
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for any cochain complex L ∈ K+(Injectives(C)), the canonical map αL : G(L)→ RG(L) is an

isomorphism.

5.3.4 Even though this is not discussed in [KM08], the notion of derivability structure

behaves well with respect to products of categories. It follows that this framework is suitable

for the study of derived functors of functors of several variables. For example, if A is an abelian

category that is equipped with a monoidal category structure, in such a way that any object

is a quotient of a flat object in a functorial manner, there should be a “flat” left derivability

structure on K−(A), and the product derivability structure of two copies of it should allow the

construction of the derived functor of the tensor product functor K−(A)× K−(A)*+K−(A).

Then, it should be possible to obtain a monoidal category structure on D−(A). Similarly, if we

assume the existence of K-flat resolutions (in the sense of [Spa88, 5.1]), it should be possible

to obtain a monoidal category structure on the full derived category D(A). In particular, this

could be used in order to define and study the properties of TorA
n(M , N) when M and N are

modules over a commutative ring A.

5.4 Spectral sequences

5.4.1 I have formalized the definition of a spectral sequence as follows:

variable (C : Type∗) [Category C] [Abelian C]

{ι : Type∗} (c : Z→ ComplexShape ι) (r0 : Z)

structure SpectralSequence where

−− the ‵r‵th page of the spectral sequence

page′ (r : Z) (hr : r0 ≤ r) : HomologicalComplex C (c r)

−− the homology of a page identifies to the next page

iso′ (r r′ : Z) (hrr′ : r + 1 = r′) (pq : ι) (hr : r0 ≤ r) :

(page′ r hr).homology pq ∼= (page′ r′ (by omega)).X pq

With this definition, a spectral sequence E starting on page r0 consists of a family of

homological complexes, the pages of E, which are defined for all integers r ≥ r0. All the

pages are complexes that are indexed by the same type ι (typically Z2 or N2), but the shapes

of differentials are specified for each page individually. The data in E also contains an

isomorphism saying that the homology of a page identifies to the next page.

For example, I have made an abbreviation CohomologicalSpectralSequence for spectral

sequences indexed by Z2, with differentials of bidegree (r, 1 − r) on the rth page. Even

though I have made general definitions, allowing general shapes of spectral sequences, in this
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exposition, I shall focus on this particular case, and use the standard mathematical notation

Ep,q
r .

5.4.2 Stabilization

Given a spectral sequence E, let us fix (p, q). For any r ≥ r0, Ep,q
r+1 identifies to a subquotient

of Ep,q
r . If the differentials of Er are such that the differential to and from Ep,q

r are both

zero, then we have a canonical isomorphism Ep,q
r
∼= Ep,q

r+1. If this holds for all big enough

integers r, we may define the limit object Ep,q
∞ in such a way that for a big enough r, we shall

have a canonical isomorphism Ep,q
r
∼= Ep,q

∞ . In my formalization, I have defined a type class

E.HasPageInfinityAt pq for pq : ι in order to express that this stabilization phenomenon

occurs. We may say that the spectral sequence E stabilizes if this property holds for all (p, q)

(even though there may not be a uniform bound on r).

5.4.3 Convergence

Assuming that the spectral sequence E stabilizes, we may say that it strongly converges in

degree n to a certain object Hn of the abelian category if we provide a filtration Fili on Hn

such that the Ep,q
∞ for all p+ q = n identify to the graded object of the successive quotients of

this filtration, which should also satisfy Fili = 0 for a small enough i and Fili = X for a big

enough i.

The convergence can be used in order to facilitate computations. For example, I have

formalized the 5-terms exact sequence in low degrees of a strongly convergent first quadrant

E2-cohomological spectral sequence:

0→ E1,0
2 → H1→ E0,1

2 → E2,0
2 → H2

Indeed, the filtration on H1 that is given by the convergence translates as a short exact

sequence 0 → E1,0
∞ → H1 → E0,1

∞ → 0, and the automatic stabilization of first quadrant

spectral sequences gives identifications E1,0
∞
∼= E1,0

2 and E0,1
∞
∼= E0,1

3 . Now, as E3 is the homology

of the E2-page, we see that E0,1
3 identifies to the kernel of the differential d2 : E0,1

2 → E2,0
2 .

Then, the cokernel of this differential d2 identifies to E2,0
3
∼= E2,0

∞ which is a subobject of H2

because of the convergence in degree 2.

5.4.4 Construction of spectral sequences

Let us assume that we have a spectral object (Ea,b) of type Z ∪ {±∞} in a triangulated

category T. The basic data of E include objects Ea,b ∈ T whenever we have an inequality

a ≤ b in Z∪{±∞}. More precisely, these Ea,b should be part of a functor from the category of
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arrows in the ordered set Z∪ {±∞}: in particular, if a ≤ b, a′ ≤ b′, a ≤ a′ and b ≤ b′, there

is a map Ea,b→ Ea′,b′ . The additional data is that of a (functorial) connecting morphism δ :

Eb,c → Ea,b[1] whenever a ≤ b ≤ c, in such a way that the following triangle is distinguished :

Ea,b→ Ea,c → Eb,c → Ea,b[1]

Among the examples of spectral objects in triangulated categories, we have the spectral

object (τ<b(τ≥aX )) attached to any object in a triangulated category that is equipped with a

t-structure 5.2.4. If a cochain complex K in an abelian category C is equipped with a filtration

Fila indexed by Z∪{±∞}, then there is an associated spectral object in the homotopy category

K(C) defined by Xa,b := Cone(Fila→ Filb): the expected distinguished triangles are given by

4.3.4. After applying the triangulated functor K(C)*+D(C), we obtain the spectral object in

D(C) of a filtered object in C(C).

If we have a homological functor H0 : T → C from the triangulated category T to an

abelian category C, these distinguished triangles lead to long exact sequences for all n ∈ Z:

· · · → Hn(Ea,b)→ Hn(Ea,c)→ Hn(Eb,c)
δ
→ Hn+1(Ea,b)→ . . .

These objects (Hn(Ea,b)) are now part of a spectral object with values in the abelian

category C as it was defined in [Ver96, II 4.1.4] and [CE99, XV §7]. Spectral sequences are

attached to any spectral object in an abelian category [Ver96, II 4.3.3]. I have formalized

this construction and studied the stabilization and convergence of the associated spectral

sequences.

Spectral sequences can also be constructed using the notion of exact couple in an abelian

category [Mas52]. Slightly less data are involved in exact couples as compared to spectral

objects. For example, in the case of a filtered complex K in an abelian category, with the

spectral object approach, we consider simultaneously all the long exact sequences in homology

deduced from all the short exact sequences 0 → Filb /Fila → Filc /Fila → Filc /Filb → 0

whenever a ≤ b ≤ c in Z ∪ {±∞}. In the exact couple approach, the data would only

involve the long exact sequences deduced from the exact sequences 0 → Fila−1 → Fila →
Fila /Fila−1→ 0 for a ∈ Z. I have opted for spectral objects because all the data involved in

the spectral sequence can be described very directly in terms of the data of the spectral object,

whereas in the exact couple approach, pages are constructed through an inductive process

known as the “derived exact couple” [Mas52, I §4].
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5.4.5 Examples of spectral sequences

The machinery for the construction of spectral sequences which was outlined above shows

that in order to construct a spectral sequence in an abelian category C, it suffices to provide

two data:

• a homological functor H0 : T*+C,

• a spectral object E in the triangulated category T.

The main example of a homological functor is the homology functor attached to a

t-structure, which obviously includes the functor H0 : D(C)*+C when C is an abelian category.

It is also important to note that if H0 : T*+C is a homological functor, then for any triangulated

functor F : T′*+T, the composition F≫ H0 : T′*+C is also a homological functor.

In order to construct a spectral object in the derived category, we may use any filtration on

a cochain complex. In particular, we may use the canonical filtration which is related to the

spectral objects attached to t-structures (see 5.2.4), but we may also use the stupid filtration.

Similarly, the total complex of a bicomplex may also be equipped with a filtration by the rows

or by the columns.

I have completely formalized the following theorem, which is the Grothendieck spectral

sequence for the composition of right derived functors:

Theorem 5.4.5.1 ([Gro57, 2.4.1]). Let F : A → B and G : B → C be additive functors

between abelian categories. We assume that A and B have enough injectives. Moreover, we

assume that for any injective object I in C, the object F(I) is “acyclic” for G, i.e. the canonical

map G(F(I))→ RG(F(I)) is an isomorphism.21

Then, for any X ∈A, there is a first quadrant cohomological spectral sequence with first

page Ep,q
2
∼= RpG(RqF(X )) which converges to Rp+q(F≫ G)(X ).

We apply the machinery of spectral sequences to the homological functor RG≫ H0 :

D+(B)*+C and the spectral object attached to RF(X ) using the canonical t-structure on

D+(B). This spectral sequence converges to H p+q(RG(RF(X ))), but the assumptions on F and

G allow to show that the natural transformation R(F≫ G)→ RF≫ RG is an isomorphism.

It follows that there is a canonical isomorphism Rp+q(F≫ G)(X )∼= H p+q(RG(RF(X ))).

21If G is left exact, this means that (RpG)(F(I)) = 0 for p > 0.

37



Joël Riou

References

[ABR08] J. Aransay, C. Ballarin, and J. Rubio. “A mechanized proof of the basic per-

turbation lemma”. In: J. Automat. Reason. 40.4 (2008), pages 271–292. ISSN:

0168-7433,1573-0670. DOI: 10.1007/s10817-007-9094-x.

[Bei+18] A. A. Beilinson, J. Bernstein, P. Deligne, and O. Gabber. Analyse et topologie

sur les espaces singuliers. I : Faisceaux pervers. Volume 100. Astérisque. Société

Mathématique de France, Paris, 2018, 172 pages.

[Ber74] G. Bergman. “A note on abelian categories – translating element-chasing proofs,

and exact embedding in abelian groups”. 1974. URL: http://math.berkeley.

edu/~gbergman/papers/unpub/elem-chase.pdf.

[Bor94] F. Borceux. Handbook of categorical algebra. 2. Volume 51. Encyclopedia of Math-

ematics and its Applications. Categories and structures. Cambridge University

Press, Cambridge, 1994, xviii+443 pages. ISBN: 0-521-44179-X.

[Buz+22] K. Buzzard, C. Hughes, K. Lau, A. Livingston, R. Fernández Mir, and S. Morrison.

“Schemes in Lean”. In: Exp. Math. 31.2 (2022), pages 355–363. ISSN: 1058-

6458,1944-950X. DOI: 10.1080/10586458.2021.1983489.

[Car19] M. Carneiro. The Type Theory of Lean. Master thesis. 2019. URL: https://github.

com/digama0/lean-type-theory/releases.

[CE99] H. Cartan and S. Eilenberg. Homological algebra. Princeton Landmarks in Mathe-

matics. With an appendix by David A. Buchsbaum, Reprint of the 1956 original.

Princeton University Press, Princeton, NJ, 1999, xvi+390 pages. ISBN: 0-691-

04991-2.

[CT22] J. Commelin and A. Topaz. Completion of the Liquid Tensor Experiment. 2022. URL:

https://leanprover-community.github.io/blog/posts/lte-final/.

[Con00] B. Conrad. Grothendieck duality and base change. Volume 1750. Lecture Notes in

Mathematics. Springer-Verlag, Berlin, 2000, vi+296 pages. ISBN: 3-540-41134-8.

DOI: 10.1007/b75857.

[Del68] P. Deligne. “Théorème de Lefschetz et critères de dégénérescence de suites spec-

trales”. In: Inst. Hautes Études Sci. Publ. Math. 35 (1968), pages 259–278. ISSN:

0073-8301,1618-1913. URL: http://www.numdam.org/item/PMIHES_1968_

_35__107_0.

38

https://doi.org/10.1007/s10817-007-9094-x
http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf
http://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf
https://doi.org/10.1080/10586458.2021.1983489
https://github.com/digama0/lean-type-theory/releases
https://github.com/digama0/lean-type-theory/releases
https://leanprover-community.github.io/blog/posts/lte-final/
https://doi.org/10.1007/b75857
http://www.numdam.org/item/PMIHES_1968__35__107_0
http://www.numdam.org/item/PMIHES_1968__35__107_0


Formalization of derived categories in Lean/Mathlib

[Del74] P. Deligne. “La conjecture de Weil. I”. In: Inst. Hautes Études Sci. Publ. Math. 43

(1974), pages 273–307. ISSN: 0073-8301,1618-1913. URL: http://www.numdam.

org/item?id=PMIHES_1974__43__273_0.

[DRB17] F. van Doorn, J. von Raumer, and U. Buchholtz. “Homotopy type theory in Lean”.

In: Interactive theorem proving. Volume 10499. Lecture Notes in Comput. Sci.

Springer, Cham, 2017, pages 479–495. ISBN: 978-3-319-66107-0; 978-3-319-

66106-3. DOI: 10.1007/978-3-319-66107-0.

[DSS] X. Dousson, F. Sergeraert, and Y. Siret. The Kenzo program. URL: http://www-

fourier.ujf-grenoble.fr/~sergerar/Kenzo/.

[GZ67] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Volume Band

35. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics

and Related Areas]. Springer-Verlag New York, Inc., New York, 1967, x+168 pages.

[Gro57] A. Grothendieck. “Sur quelques points d’algèbre homologique”. In: Tohoku Math.

J. (2) 9 (1957), pages 119–221. ISSN: 0040-8735,2186-585X. DOI: 10.2748/

tmj/1178244839.

[GMP24] B. Guillemet, A. Mahboubi, and M. Piquerez. Machine-Checked Categorical Dia-

grammatic Reasoning. 2024. arXiv: 2402.14485 [cs.LO]. URL: https://arxiv.

org/abs/2402.14485.

[Har66] R. Hartshorne. Residues and duality. Volume No. 20. Lecture Notes in Mathematics.

Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard

1963/64, With an appendix by P. Deligne. Springer-Verlag, Berlin-New York, 1966,

vii+423 pages.

[Him20] M. Himmel. “Diagram chasing in interactive theorem proving”. Bachelorarbeit.

Karlsruher Institut für Technologie, 2020. URL: https://pp.ipd.kit.edu/

uploads/publikationen/himmel20bachelorarbeit.pdf.

[HR25] M. Himmel and J. Riou. Theorems about abelian categories. 2025. URL: https:

//leanprover-community.github.io/blog/posts/abelian-categories/.

[Hov01] M. Hovey. “Model category structures on chain complexes of sheaves”. In: Trans.

Amer. Math. Soc. 353.6 (2001), pages 2441–2457. ISSN: 0002-9947,1088-6850.

DOI: 10.1090/S0002-9947-01-02721-0.

[Ill90] L. Illusie. “Catégories dérivées et dualité: travaux de J.-L. Verdier”. In: Enseign.

Math. (2) 36.3-4 (1990), pages 369–391. ISSN: 0013-8584.

39

http://www.numdam.org/item?id=PMIHES_1974__43__273_0
http://www.numdam.org/item?id=PMIHES_1974__43__273_0
https://doi.org/10.1007/978-3-319-66107-0
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
https://doi.org/10.2748/tmj/1178244839
https://doi.org/10.2748/tmj/1178244839
https://arxiv.org/abs/2402.14485
https://arxiv.org/abs/2402.14485
https://arxiv.org/abs/2402.14485
https://pp.ipd.kit.edu/uploads/publikationen/himmel20bachelorarbeit.pdf
https://pp.ipd.kit.edu/uploads/publikationen/himmel20bachelorarbeit.pdf
https://leanprover-community.github.io/blog/posts/abelian-categories/
https://leanprover-community.github.io/blog/posts/abelian-categories/
https://doi.org/10.1090/S0002-9947-01-02721-0


Joël Riou

[Jon+] A. J. de Jong et al. The Stacks project. URL: https://stacks.math.columbia.

edu/.

[KM08] B. Kahn and G. Maltsiniotis. “Structures de dérivabilité”. In: Adv. Math. 218.4

(2008), pages 1286–1318. ISSN: 0001-8708,1090-2082. DOI: 10.1016/j.aim.

2008.03.010.

[LHF23] J. Limperg and A. Halkjær From. “Aesop: White-Box Best-First Proof Search for

Lean”. In: CPP 2023: Proceedings of the 12th ACM SIGPLAN Internation Conference

on Certified Programs and Proofs. 2023, pages 253–266. DOI: https://doi.org/

10.1145/3573105.3575671.

[Liv23] A. Livingston. “Group Cohomology in the Lean Community Library”. In: 14th

International Conference on Interactive Theorem Proving (ITP 2023). Edited by A.

Naumowicz and R. Thiemann. Volume 268. Leibniz International Proceedings in

Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2023, 22:1–22:17. ISBN: 978-3-95977-284-6. DOI: 10.4230/LIPIcs.

ITP.2023.22.

[Mas52] W. S. Massey. “Exact couples in algebraic topology. I, II”. In: Ann. of Math. (2) 56

(1952), pages 363–396. ISSN: 0003-486X. DOI: 10.2307/1969805.

[Mit64] B. Mitchell. “The full imbedding theorem”. In: Amer. J. Math. 86.3 (1964),

pages 619–637. ISSN: 0002-9327,1080-6377. DOI: 10.2307/2373027.

[Mon22] Y. Monbru. “Towards automatic diagram chasing”. M1 report. École Normale

Supérieure Paris-Saclay. 2022. URL: https://github.com/ymonbru/Diagram-

chasing/blob/main/MONBRU_Yannis_Rapport.pdf.

[MU21] L. de Moura and S. Ullrich. “The Lean 4 Theorem Prover and Programming

Language”. In: Automated Deduction – CADE 28. Edited by A. Platzer and G.

Sutcliffe. Cham: Springer International Publishing, 2021, pages 625–635. ISBN:

978-3-030-79876-5. URL: https://link.springer.com/chapter/10.1007/

978-3-030-79876-5_37.

[Mur22] B. Murphy. Formalization of the Brouwer fixed-point theorem in Lean 3. 2022. URL:

https://github.com/Shamrock-Frost/BrouwerFixedPoint.

[Nee01] A. Neeman. Triangulated categories. Volume 148. Annals of Mathematics Studies.

Princeton University Press, Princeton, NJ, 2001, pages viii+449. ISBN: 0-691-

08685-0; 0-691-08686-9. DOI: 10.1515/9781400837212.

40

https://stacks.math.columbia.edu/
https://stacks.math.columbia.edu/
https://doi.org/10.1016/j.aim.2008.03.010
https://doi.org/10.1016/j.aim.2008.03.010
https://doi.org/https://doi.org/10.1145/3573105.3575671
https://doi.org/https://doi.org/10.1145/3573105.3575671
https://doi.org/10.4230/LIPIcs.ITP.2023.22
https://doi.org/10.4230/LIPIcs.ITP.2023.22
https://doi.org/10.2307/1969805
https://doi.org/10.2307/2373027
https://github.com/ymonbru/Diagram-chasing/blob/main/MONBRU_Yannis_Rapport.pdf
https://github.com/ymonbru/Diagram-chasing/blob/main/MONBRU_Yannis_Rapport.pdf
https://link.springer.com/chapter/10.1007/978-3-030-79876-5_37
https://link.springer.com/chapter/10.1007/978-3-030-79876-5_37
https://github.com/Shamrock-Frost/BrouwerFixedPoint
https://doi.org/10.1515/9781400837212


Formalization of derived categories in Lean/Mathlib

[Qui67] D. G. Quillen. Homotopical algebra. Volume No. 43. Lecture Notes in Mathematics.

Springer-Verlag, Berlin-New York, 1967, iv+156 pp. (not consecutively paged).

[RS13] J. Rubio and F. Sergeraert. Constructive Homological Algebra and Applications.

2013. arXiv: 1208.3816 [math.KT]. URL: https://arxiv.org/abs/1208.3816.

[Sch21] P. Scholze. Half a year of the Liquid tensor experiment: Amazing developments. 2021.

URL: https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-

the-liquid-tensor-experiment-amazing-developments/.

[Ser51] J.-P. Serre. “Homologie singulière des espaces fibrés. Applications”. In: Ann. of

Math. (2) 54 (1951), pages 425–505. ISSN: 0003-486X. DOI: 10.2307/1969485.

[Sim06] C. Simpson. “Explaining Gabriel-Zisman localization to the computer”. In: J.

Automat. Reason. 36.3 (2006), pages 259–285. ISSN: 0168-7433,1573-0670. DOI:

10.1007/s10817-006-9038-x.

[Spa88] N. Spaltenstein. “Resolutions of unbounded complexes”. In: Compositio Math.

65.2 (1988), pages 121–154. ISSN: 0010-437X,1570-5846. URL: http://www.

numdam.org/item?id=CM_1988__65_2_121_0.

[Spa95] E. H. Spanier. Algebraic topology. Springer-Verlag, New York, 1995, xvi+528 pages.

ISBN: 0-387-94426-5.

[The20] The mathlib community. “The Lean mathematical library”. In: Proceedings of the

9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP

2020, New Orleans, LA, USA, January 20-21, 2020. 2020, pages 367–381. DOI:

10.1145/3372885.3373824.

[Sga] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Vol-

ume Vol. 269. Lecture Notes in Mathematics. Séminaire de Géométrie Algébrique

du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.

L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

Springer-Verlag, Berlin-New York, 1972, xix+525 pages.

[Ver77] J.-L. Verdier. “Catégories dérivées: quelques résultats (état 0)”. In: Cohomologie

étale. Volume 569. Lecture Notes in Math. Springer, Berlin, 1977, pages 262–311.

ISBN: 3-540-08066-X; 0-387-08066-X.

[Ver96] J.-L. Verdier. “Des catégories dérivées des catégories abéliennes”. In: Astérisque

239 (1996). With a preface by Luc Illusie, Edited and with a note by Georges

Maltsiniotis, xii+253 pages. ISSN: 0303-1179,2492-5926.

41

https://arxiv.org/abs/1208.3816
https://arxiv.org/abs/1208.3816
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://doi.org/10.2307/1969485
https://doi.org/10.1007/s10817-006-9038-x
http://www.numdam.org/item?id=CM_1988__65_2_121_0
http://www.numdam.org/item?id=CM_1988__65_2_121_0
https://doi.org/10.1145/3372885.3373824


Joël Riou

[WZ22] E. Wieser and J. Zhang. “Graded Rings in Lean’s Dependent Type Theory”. In:

Intelligent Computer Mathematics - 15th International Conference, CICM 2022,

Tbilisi, Georgia, September 19-23, 2022, Proceedings. Edited by K. Buzzard and

T. Kutsia. Volume 13467. Lecture Notes in Computer Science. Springer, 2022,

pages 122–137. DOI: 10.1007/978-3-031-16681-5_8.

42

https://doi.org/10.1007/978-3-031-16681-5_8

	Introduction
	
	
	
	
	
	
	
	
	
	
	Acknowledgements

	Homology and diagram chasing in general abelian categories
	The homology refactor
	
	
	
	
	

	Diagram chasing
	
	
	


	Localization of categories
	
	
	
	
	Calculus of fractions
	Preadditive structure
	Universe issues
	
	
	
	
	
	
	


	The derived category
	Definitions
	

	Shifts
	
	
	
	
	
	
	
	
	

	The triangulated structure on the homotopy category
	
	Calculus of cochains
	The octahedron axiom

	The localization theorem for triangulated categories
	
	


	Ongoing works
	`3́9`42`"̇613A``45`47`"603AExt-groups
	t-structures
	
	
	
	

	Derived functors
	
	
	

	Spectral sequences
	
	Stabilization
	Convergence
	Construction of spectral sequences
	Examples of spectral sequences



